Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Gut Microbes ; 14(1): 2152306, 2022.
Article in English | MEDLINE | ID: mdl-36469575

ABSTRACT

Individuals infected with Helicobacter pylori harbor unique and diverse populations of quasispecies, but diversity between and within different regions of the human stomach and the process of bacterial adaptation to each location are not yet well understood. We applied whole-genome deep sequencing to characterize the within- and between-stomach region genetic diversity of H. pylori populations from paired antrum and corpus biopsies of 15 patients, along with single biopsies from one region of an additional 3 patients, by scanning allelic diversity. We combined population deep sequencing with more conventional sequencing of multiple H. pylori single colony isolates from individual biopsies to generate a unique dataset. Single colony isolates were used to validate the scanning allelic diversity pipelines. We detected extensive population allelic diversity within the different regions of each patient's stomach. Diversity was most commonly found within non-coding, hypothetical, outer membrane, restriction modification system, virulence, lipopolysaccharide biosynthesis, efflux systems, and chemotaxis-associated genes. Antrum and corpus populations from the same patient grouped together phylogenetically, indicating that most patients were initially infected with a single strain, which then diversified. Single colonies from the antrum and corpus of the same patients grouped into distinct clades, suggesting mechanisms for within-location adaptation across multiple H. pylori isolates from different patients. The comparisons made available by combined sequencing and analysis of isolates and populations enabled comprehensive analysis of the genetic changes associated with H. pylori diversification and stomach region adaptation.


Subject(s)
Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/genetics , Helicobacter Infections/microbiology , Stomach/microbiology , Genomics
2.
J Clin Invest ; 132(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36099049

ABSTRACT

BackgroundImmune exhaustion and senescence are dominant dysfunctional states of effector T cells and major hurdles for the success of cancer immunotherapy. In the current study, we characterized how acute myeloid leukemia (AML) promotes the generation of senescent-like CD8+ T cells and whether they have prognostic relevance.METHODSWe analyzed NanoString, bulk RNA-Seq and single-cell RNA-Seq data from independent clinical cohorts comprising 1,896 patients treated with chemotherapy and/or immune checkpoint blockade (ICB).ResultsWe show that senescent-like bone marrow CD8+ T cells were impaired in killing autologous AML blasts and that their proportion negatively correlated with overall survival (OS). We defined what we believe to be new immune effector dysfunction (IED) signatures using 2 gene expression profiling platforms and reported that IED scores correlated with adverse-risk molecular lesions, stemness, and poor outcomes; these scores were a more powerful predictor of OS than 2017-ELN risk or leukemia stem cell (LSC17) scores. IED expression signatures also identified an ICB-unresponsive tumor microenvironment and predicted significantly shorter OS.ConclusionThe IED scores provided improved AML-risk stratification and could facilitate the delivery of personalized immunotherapies to patients who are most likely to benefit.TRIAL REGISTRATIONClinicalTrials.gov; NCT02845297.FUNDINGJohn and Lucille van Geest Foundation, Nottingham Trent University's Health & Wellbeing Strategic Research Theme, NIH/NCI P01CA225618, Genentech-imCORE ML40354, Qatar National Research Fund (NPRP8-2297-3-494).


Subject(s)
Immune System Diseases , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/drug therapy , Prognosis , Immunotherapy , Tumor Microenvironment , CD8-Positive T-Lymphocytes
3.
J Gastroenterol Hepatol ; 37(3): 531-541, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34931384

ABSTRACT

BACKGROUND AND AIM: Anti-tumor necrosis factor-α (anti-TNF-α) agents have been used for inflammatory bowel disease; however, it has up to 30% nonresponse rate. Identifying molecular pathways and finding reliable diagnostic biomarkers for patient response to anti-TNF-α treatment are needed. METHODS: Publicly available transcriptomic data from inflammatory bowel disease patients receiving anti-TNF-α therapy were systemically collected and integrated. In silico flow cytometry approaches and Metascape were applied to evaluate immune cell populations and to perform gene enrichment analysis, respectively. Genes identified within enrichment pathways validated in neutrophils were tracked in an anti-TNF-α-treated animal model (with lipopolysaccharide-induced inflammation). The receiver operating characteristic curve was applied to all genes to identify the best prediction biomarkers. RESULTS: A total of 449 samples were retrieved from control, baseline, and after primary anti-TNF-α therapy or placebo. No statistically significant differences were observed between anti-TNF-α treatment responders and nonresponders at baseline in immune microenvironment scores. Neutrophil, endothelial cell, and B-cell populations were higher in baseline nonresponders, and chemotaxis pathways may contribute to the treatment resistance. Genes related to chemotaxis pathways were significantly upregulated in lipopolysaccharide-induced neutrophils, but no statistically significant changes were observed in neutrophils treated with anti-TNF-α. Interleukin 13 receptor subunit alpha 2 (IL13RA2) is the best predictor (receiver operating characteristic curve: 80.7%, 95% confidence interval: 73.8-87.5%), with a sensitivity of 68.13% and specificity of 84.93%, and significantly higher in nonresponders compared with responders (P < 0.0001). CONCLUSIONS: Hyperactive neutrophil chemotaxis influences responses to anti-TNF-α treatment, and IL13RA2 is a potential biomarker to predict anti-TNF-α treatment response.


Subject(s)
Chemotaxis , Inflammatory Bowel Diseases , Neutrophils , Tumor Necrosis Factor Inhibitors , Animals , Chemotaxis/physiology , Drug Resistance , Humans , Inflammatory Bowel Diseases/drug therapy , Neutrophils/physiology , Tumor Necrosis Factor Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/drug effects
4.
Sci Rep ; 9(1): 9491, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31263200

ABSTRACT

MicroRNAs (miRNAs) are proposed as potential biomarkers for the diagnosis of numerous diseases. Here, we performed a meta-analysis to evaluate the utility of faecal miRNAs as a non-invasive tool in colorectal cancer (CRC) screening. A systematic literature search, according to predetermined criteria, in five databases identified 17 research articles including 6475, 783 and 5569 faecal-based miRNA tests in CRC, adenoma patients and healthy individuals, respectively. Sensitivity, specificity, positive/negative likelihood and diagnostic odds ratios, area under curve (AUC), summary receiver operator characteristic (sROC) curves, association of individual or combinations of miRNAs to cancer stage and location, subgroup, meta-regression and Deeks' funnel plot asymmetry analyses were employed. Pooled miRNAs for CRC had an AUC of 0.811, with a sensitivity of 58.8% (95% confidence interval [CI]: 51.7-65.5%) and specificity of 84.8% (95% CI: 81.1-87.8%), whilst for colonic adenoma, it was 0.747, 57.3% (95% CI: 40.8-72.3%) and 76.1% (95% CI: 66.1-89.4%), respectively. The most reliable individual miRNA was miR-21, with an AUC of 0.843, sensitivity of 59.3% (95% CI: 26.3-85.6%) and specificity of 85.6% (95% CI: 72.2-93.2%). Paired stage analysis showed a better diagnostic accuracy in late stage CRC and sensitivity higher in distal than proximal CRC. In conclusion, faecal miR-21, miR-92a and their combination are promising non-invasive biomarkers for faecal-based CRC screening.


Subject(s)
Adenoma , Colonic Neoplasms , Feces , MicroRNAs/metabolism , RNA, Neoplasm/metabolism , Adenoma/diagnosis , Adenoma/metabolism , Colonic Neoplasms/diagnosis , Colonic Neoplasms/metabolism , Female , Humans , Male
5.
Microb Genom ; 3(10): e000133, 2017 10.
Article in English | MEDLINE | ID: mdl-29177091

ABSTRACT

Yersinia pseudotuberculosis is a Gram-negative intestinal pathogen of humans and has been responsible for several nationwide gastrointestinal outbreaks. Large-scale population genomic studies have been performed on the other human pathogenic species of the genus Yersinia, Yersinia pestis and Yersinia enterocolitica allowing a high-resolution understanding of the ecology, evolution and dissemination of these pathogens. However, to date no purpose-designed large-scale global population genomic analysis of Y. pseudotuberculosis has been performed. Here we present analyses of the genomes of 134 strains of Y. pseudotuberculosis isolated from around the world, from multiple ecosystems since the 1960s. Our data display a phylogeographic split within the population, with an Asian ancestry and subsequent dispersal of successful clonal lineages into Europe and the rest of the world. These lineages can be differentiated by CRISPR cluster arrays, and we show that the lineages are limited with respect to inter-lineage genetic exchange. This restriction of genetic exchange maintains the discrete lineage structure in the population despite co-existence of lineages for thousands of years in multiple countries. Our data highlights how CRISPR can be informative of the evolutionary trajectory of bacterial lineages, and merits further study across bacteria.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Yersinia pseudotuberculosis Infections/microbiology , Yersinia pseudotuberculosis/classification , Yersinia pseudotuberculosis/genetics , Animals , Gene Library , Humans , Phylogeny , Whole Genome Sequencing
6.
Evol Appl ; 10(8): 784-791, 2017 09.
Article in English | MEDLINE | ID: mdl-29151870

ABSTRACT

Currently, the effects of chronic, continuous low dose environmental irradiation on the mitochondrial genome of resident small mammals are unknown. Using the bank vole (Myodes glareolus) as a model system, we tested the hypothesis that approximately 50 generations of exposure to the Chernobyl environment has significantly altered genetic diversity of the mitochondrial genome. Using deep sequencing, we compared mitochondrial genomes from 131 individuals from reference sites with radioactive contamination comparable to that present in northern Ukraine before the 26 April 1986 meltdown, to populations where substantial fallout was deposited following the nuclear accident. Population genetic variables revealed significant differences among populations from contaminated and uncontaminated localities. Therefore, we rejected the null hypothesis of no significant genetic effect from 50 generations of exposure to the environment created by the Chernobyl meltdown. Samples from contaminated localities exhibited significantly higher numbers of haplotypes and polymorphic loci, elevated genetic diversity, and a significantly higher average number of substitutions per site across mitochondrial gene regions. Observed genetic variation was dominated by synonymous mutations, which may indicate a history of purify selection against nonsynonymous or insertion/deletion mutations. These significant differences were not attributable to sample size artifacts. The observed increase in mitochondrial genomic diversity in voles from radioactive sites is consistent with the possibility that chronic, continuous irradiation resulting from the Chernobyl disaster has produced an accelerated mutation rate in this species over the last 25 years. Our results, being the first to demonstrate this phenomenon in a wild mammalian species, are important for understanding genetic consequences of exposure to low-dose radiation sources.

8.
PLoS One ; 10(3): e0120671, 2015.
Article in English | MEDLINE | ID: mdl-25781462

ABSTRACT

The characterization and public release of genome sequences from thousands of organisms is expanding the scope for genetic variation studies. However, understanding the phenotypic consequences of genetic variation remains a challenge in eukaryotes due to the complexity of the genotype-phenotype map. One approach to this is the intensive study of model systems for which diverse sources of information can be accumulated and integrated. Saccharomyces cerevisiae is an extensively studied model organism, with well-known protein functions and thoroughly curated phenotype data. To develop and expand the available resources linking genomic variation with function in yeast, we aim to model the pan-genome of S. cerevisiae. To initiate the yeast pan-genome, we newly sequenced or re-sequenced the genomes of 25 strains that are commonly used in the yeast research community using advanced sequencing technology at high quality. We also developed a pipeline for automated pan-genome analysis, which integrates the steps of assembly, annotation, and variation calling. To assign strain-specific functional annotations, we identified genes that were not present in the reference genome. We classified these according to their presence or absence across strains and characterized each group of genes with known functional and phenotypic features. The functional roles of novel genes not found in the reference genome and associated with strains or groups of strains appear to be consistent with anticipated adaptations in specific lineages. As more S. cerevisiae strain genomes are released, our analysis can be used to collate genome data and relate it to lineage-specific patterns of genome evolution. Our new tool set will enhance our understanding of genomic and functional evolution in S. cerevisiae, and will be available to the yeast genetics and molecular biology community.


Subject(s)
Contig Mapping/methods , Genome, Fungal , Saccharomyces cerevisiae/genetics , Sequence Analysis, DNA/methods , Software
9.
BMC Genomics ; 15: 1121, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25515150

ABSTRACT

BACKGROUND: Following the association of Cronobacter spp. to several publicized fatal outbreaks in neonatal intensive care units of meningitis and necrotising enterocolitis, the World Health Organization (WHO) in 2004 requested the establishment of a molecular typing scheme to enable the international control of the organism. This paper presents the application of Next Generation Sequencing (NGS) to Cronobacter which has led to the establishment of the Cronobacter PubMLST genome and sequence definition database (http://pubmlst.org/cronobacter/) containing over 1000 isolates with metadata along with the recognition of specific clonal lineages linked to neonatal meningitis and adult infections RESULTS: Whole genome sequencing and multilocus sequence typing (MLST) has supports the formal recognition of the genus Cronobacter composed of seven species to replace the former single species Enterobacter sakazakii. Applying the 7-loci MLST scheme to 1007 strains revealed 298 definable sequence types, yet only C. sakazakii clonal complex 4 (CC4) was principally associated with neonatal meningitis. This clonal lineage has been confirmed using ribosomal-MLST (51-loci) and whole genome-MLST (1865 loci) to analyse 107 whole genomes via the Cronobacter PubMLST database. This database has enabled the retrospective analysis of historic cases and outbreaks following re-identification of those strains. CONCLUSIONS: The Cronobacter PubMLST database offers a central, open access, reliable sequence-based repository for researchers. It has the capacity to create new analysis schemes 'on the fly', and to integrate metadata (source, geographic distribution, clinical presentation). It is also expandable and adaptable to changes in taxonomy, and able to support the development of reliable detection methods of use to industry and regulatory authorities. Therefore it meets the WHO (2004) request for the establishment of a typing scheme for this emergent bacterial pathogen. Whole genome sequencing has additionally shown a range of potential virulence and environmental fitness traits which may account for the association of C. sakazakii CC4 pathogenicity, and propensity for neonatal CNS.


Subject(s)
Cronobacter/genetics , Genome, Bacterial , Multilocus Sequence Typing , Algorithms , Cronobacter/classification , Cronobacter sakazakii/classification , Cronobacter sakazakii/genetics , Databases, Genetic , Genetic Linkage , Genetic Loci , Genotype , High-Throughput Nucleotide Sequencing , Phylogeny , Sequence Analysis, DNA
10.
Proc Natl Acad Sci U S A ; 111(43): 15474-9, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25313049

ABSTRACT

The manifestation of mitochondrial DNA (mtDNA) diseases depends on the frequency of heteroplasmy (the presence of several alleles in an individual), yet its transmission across generations cannot be readily predicted owing to a lack of data on the size of the mtDNA bottleneck during oogenesis. For deleterious heteroplasmies, a severe bottleneck may abruptly transform a benign (low) frequency in a mother into a disease-causing (high) frequency in her child. Here we present a high-resolution study of heteroplasmy transmission conducted on blood and buccal mtDNA of 39 healthy mother-child pairs of European ancestry (a total of 156 samples, each sequenced at ∼20,000× per site). On average, each individual carried one heteroplasmy, and one in eight individuals carried a disease-associated heteroplasmy, with minor allele frequency ≥1%. We observed frequent drastic heteroplasmy frequency shifts between generations and estimated the effective size of the germ-line mtDNA bottleneck at only ∼30-35 (interquartile range from 9 to 141). Accounting for heteroplasmies, we estimated the mtDNA germ-line mutation rate at 1.3 × 10(-8) (interquartile range from 4.2 × 10(-9) to 4.1 × 10(-8)) mutations per site per year, an order of magnitude higher than for nuclear DNA. Notably, we found a positive association between the number of heteroplasmies in a child and maternal age at fertilization, likely attributable to oocyte aging. This study also took advantage of droplet digital PCR (ddPCR) to validate heteroplasmies and confirm a de novo mutation. Our results can be used to predict the transmission of disease-causing mtDNA variants and illuminate evolutionary dynamics of the mitochondrial genome.


Subject(s)
DNA, Mitochondrial/genetics , Germ Cells/metabolism , Inheritance Patterns/genetics , Maternal Age , Age Factors , Child , Disease/genetics , Female , Gene Frequency/genetics , Humans , INDEL Mutation/genetics , Reproducibility of Results , Sequence Analysis, DNA
11.
Biotechniques ; 56(3): 134-141, 2014.
Article in English | MEDLINE | ID: mdl-24641477

ABSTRACT

Polymorphism discovery is a routine application of next-generation sequencing technology where multiple samples are sent to a service provider for library preparation, subsequent sequencing, and bioinformatic analyses. The decreasing cost and advances in multiplexing approaches have made it possible to analyze hundreds of samples at a reasonable cost. However, because of the manual steps involved in the initial processing of samples and handling of sequencing equipment, cross-contamination remains a significant challenge. It is especially problematic in cases where polymorphism frequencies do not adhere to diploid expectation, for example, heterogeneous tumor samples, organellar genomes, as well as during bacterial and viral sequencing. In these instances, low levels of contamination may be readily mistaken for polymorphisms, leading to false results. Here we describe practical steps designed to reliably detect contamination and uncover its origin, and also provide new, Galaxy-based, readily accessible computational tools and workflows for quality control. All results described in this report can be reproduced interactively on the web as described at http://usegalaxy.org/contamination.


Subject(s)
DNA Contamination , Sequence Analysis, DNA/methods , Sequence Analysis/methods , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Internet , Polymorphism, Genetic , Reproducibility of Results
12.
Behav Brain Sci ; 35(5): 364-5, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23095385

ABSTRACT

The plasticity of the genome complicates genetic causation but should be investigated from a functional perspective. Specific adaptive hypotheses are referenced in the target article, but it is also necessary to explain how the integrity of the genome is maintained despite processes that tend towards its diversification and degradation. These include the accumulation of deleterious changes and intragenomic conflict.


Subject(s)
Genetics, Behavioral , Genomics , Female , Humans , Pregnancy
13.
Genome Biol Evol ; 4(4): 586-601, 2012.
Article in English | MEDLINE | ID: mdl-22454131

ABSTRACT

Many software tools for comparative analysis of genomic sequence data have been released in recent decades. Despite this, it remains challenging to determine evolutionary relationships in gene clusters due to their complex histories involving duplications, deletions, inversions, and conversions. One concept describing these relationships is orthology. Orthologs derive from a common ancestor by speciation, in contrast to paralogs, which derive from duplication. Discriminating orthologs from paralogs is a necessary step in most multispecies sequence analyses, but doing so accurately is impeded by the occurrence of gene conversion events. We propose a refined method of orthology assignment based on two paradigms for interpreting its definition: by genomic context or by sequence content. X-orthology (based on context) traces orthology resulting from speciation and duplication only, while N-orthology (based on content) includes the influence of conversion events. We developed a computational method for automatically mapping both types of orthology on a per-nucleotide basis in gene cluster regions studied by comparative sequencing, and we make this mapping accessible by visualizing the output. All of these steps are incorporated into our newly extended CHAP 2 package. We evaluate our method using both simulated data and real gene clusters (including the well-characterized α-globin and ß-globin clusters). We also illustrate use of CHAP 2 by analyzing four more loci: CCL (chemokine ligand), IFN (interferon), CYP2abf (part of cytochrome P450 family 2), and KIR (killer cell immunoglobulin-like receptors). These new methods facilitate and extend our understanding of evolution at these and other loci by adding automated accurate evolutionary inference to the biologist's toolkit. The CHAP 2 package is freely available from http://www.bx.psu.edu/miller_lab.


Subject(s)
Evolution, Molecular , Mammals/genetics , Multigene Family , Proteins/genetics , Animals , Gene Conversion , Gene Duplication , Genome , Humans , Mammals/classification , Phylogeny
14.
Genome Biol ; 12(6): R59, 2011.
Article in English | MEDLINE | ID: mdl-21699709

ABSTRACT

BACKGROUND: Originally believed to be a rare phenomenon, heteroplasmy - the presence of more than one mitochondrial DNA (mtDNA) variant within a cell, tissue, or individual - is emerging as an important component of eukaryotic genetic diversity. Heteroplasmies can be used as genetic markers in applications ranging from forensics to cancer diagnostics. Yet the frequency of heteroplasmic alleles may vary from generation to generation due to the bottleneck occurring during oogenesis. Therefore, to understand the alterations in allele frequencies at heteroplasmic sites, it is of critical importance to investigate the dynamics of maternal mtDNA transmission. RESULTS: Here we sequenced, at high coverage, mtDNA from blood and buccal tissues of nine individuals from three families with a total of six maternal transmission events. Using simulations and re-sequencing of clonal DNA, we devised a set of criteria for detecting polymorphic sites in heterogeneous genetic samples that is resistant to the noise originating from massively parallel sequencing technologies. Application of these criteria to nine human mtDNA samples revealed four heteroplasmic sites. CONCLUSIONS: Our results suggest that the incidence of heteroplasmy may be lower than estimated in some other recent re-sequencing studies, and that mtDNA allelic frequencies differ significantly both between tissues of the same individual and between a mother and her offspring. We designed our study in such a way that the complete analysis described here can be repeated by anyone either at our site or directly on the Amazon Cloud. Our computational pipeline can be easily modified to accommodate other applications, such as viral re-sequencing.


Subject(s)
Computer Simulation , DNA, Mitochondrial/genetics , Mitochondrial Diseases/genetics , Models, Genetic , Alleles , Base Sequence , Female , Gene Frequency , Genome, Mitochondrial , Haplotypes , Heredity , High-Throughput Nucleotide Sequencing , Humans , Incidence , Mitochondrial Diseases/epidemiology , Molecular Sequence Data , Pedigree , Polymerase Chain Reaction , Polymorphism, Genetic , Sequence Analysis, DNA
15.
Genome Biol Evol ; 1: 294-307, 2009 Aug 11.
Article in English | MEDLINE | ID: mdl-20333199

ABSTRACT

Experimental evolution in rapidly reproducing viruses offers a robust means to infer substitution trajectories during evolution. But with conventional approaches, this inference is limited by how many individual genotypes can be sampled from the population at a time. Low-frequency changes are difficult to detect, potentially rendering early stages of adaptation unobservable. Here we circumvent this using short-read sequencing technology in a fine-grained analysis of polymorphism dynamics in the sentinel organism: a single-stranded DNA phage PhiX174. Nucleotide differences were educed from noise with binomial filtering methods that harnessed quality scores and separate data from brief phage amplifications. Remarkably, a significant degree of variation was observed in all samples including those grown in brief 2-h cultures. Sites previously reported as subject to high-frequency polymorphisms over a course of weeks exhibited monotonic increases in polymorphism frequency within hours in this study. Additionally, even with limitations imposed by the short length of sequencing reads, we were able to observe statistically significant linkage among polymorphic sites in evolved lineages. Additional parallels between replicate lineages were apparent in the sharing of polymorphic sites and in correlated polymorphism frequencies. Missense mutations were more likely to occur than silent mutations. This study offers the first glimpse into "real-time" substitution dynamics and offers a robust conceptual framework for future viral resequencing studies.

16.
Mol Biol Evol ; 25(12): 2745-57, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18842685

ABSTRACT

The Gnas and Gnal loci, which encode the alpha subunits of stimulatory G-proteins, are among the most complex eukaryotic genes. They combine elaborate patterns of imprinting, alternative splicing, and antisense transcription with tissue- and developmental stage-specific expression. Different regions of these genes evolve at drastically different rates such that some show complete conservation, whereas others are virtually unalignable. Yet, the most unusual feature of the Gnas/Gnal complex is the presence of the longest known overlap between coding regions resulting in the production of two unrelated proteins: XLalphas and its putative regulator ALEX. Here we elucidate the evolutionary history of both loci and uncover new complexities. First, alternatively spliced regions of both loci evolve under varying selective regimes echoing their distinct biological roles. Second, an enigmatic alternative transcript of the Gnas locus, known as Nesp, is likely bicistronic. Third, rodent XLalphas and ALEX follow an evolutionary trajectory distinct from that of other mammals and show extensive sequence variation in the internal repeat region, a fact that might be explained by variation in the robustness of imprinting. Fourth, we show that the overlap between the XLalphas and ALEX frames is restricted to eutherian mammals. Finally, we reconcile our findings with extensive physiological data derived from animal models.


Subject(s)
GTP-Binding Protein alpha Subunits/genetics , Amino Acid Sequence , Animals , Base Sequence , Exons , Female , GTP-Binding Protein alpha Subunits/chemistry , Humans , Male , Molecular Sequence Data , Sequence Alignment
17.
Adv Exp Med Biol ; 626: 41-61, 2008.
Article in English | MEDLINE | ID: mdl-18372790

ABSTRACT

The effects of imprinted genes on fetal growth and development have been firmly established. By and large, their roles conform to a conflict over provision of limited maternal resources to offspring, such that paternally expressed imprinted genes in offspring generally promote growth of the fetus, while maternally expressed imprinted genes tend to restrict it. It is comparatively recently that the important effects of imprinted genes in postnatal physiology have begun to be demonstrated, although a similar conflict may apply. In this chapter, we shall review some of the genetic evidence for imprinted effects on obesity, consider the action of selected imprinted genes in the central and peripheral control of energy homeostasis and look in detail at the intriguing effects of imprinting at the Gnas locus. Finally, we shall discuss whether these observations fit expectations of the prevailing theory for the existence of imprinting in mammals and go on to consider imprinted genes as targets for developmental programming.


Subject(s)
Adaptation, Physiological , Energy Metabolism , Genomic Imprinting/genetics , Animals , Homeostasis , Postnatal Care
SELECTION OF CITATIONS
SEARCH DETAIL
...